On the Generic Existence of Periodic Orbits in Hamiltonian Dynamics

نویسنده

  • VIKTOR L. GINZBURG
چکیده

We prove several generic existence results for infinitely many periodic orbits of Hamiltonian diffeomorphisms or Reeb flows. For instance, we show that a Hamiltonian diffeomorphism of a complex projective space or Grassmannian generically has infinitely many periodic orbits. We also consider symplectomorphisms of the two-torus with irrational flux. We show that such a symplectomorphism necessarily has infinitely many periodic orbits whenever it has one and all periodic points are non-degenerate.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetric Homoclinic Orbits at the Periodic Hamiltonian Hopf Bifurcation

We prove the existence of symmetric homoclinic orbits to a saddle-focus symmetric periodic orbit that appears in a generic family of reversible three degrees of freedom Hamiltonian system due to periodic Hamiltonian Hopf bifurcation, if some coefficient A of the normal form of the fourth order is positive. If this coefficient is negative, then for the opposite side of the bifurcation parameter ...

متن کامل

Relative normal modes for nonlinear Hamiltonian systems

An estimate on the number of distinct relative periodic orbits around a stable relative equilibrium in a Hamiltonian system with continuous symmetry is given. This result constitutes a generalization to the Hamiltonian symmetric framework of a classical result by Weinstein and Moser on the existence of periodic orbits in the energy levels surrounding a stable equilibrium.The estimate obtained i...

متن کامل

ar X iv : m at h / 00 07 07 7 v 3 [ m at h . D G ] 1 0 Se p 20 04 Relative normal modes for nonlinear Hamiltonian

An estimate on the number of distinct relative periodic orbits around a stable relative equilibrium in a Hamiltonian system with continuous symmetry is given. This result constitutes a generalization to the Hamiltonian symmetric framework of a classical result by Weinstein and Moser on the existence of periodic orbits in the energy levels surrounding a stable equilibrium.The estimate obtained i...

متن کامل

The Hamiltonian Seifert Conjecture: Examples and Open Problems

Hamiltonian dynamical systems tend to have infinitely many periodic orbits. For example, for a broad class of symplectic manifolds almost all levels of a proper smooth Hamiltonian carry periodic orbits. The Hamiltonian Seifert conjecture is the existence problem for regular compact energy levels without periodic orbits. Very little is known about how large the set of regular energy values witho...

متن کامل

Orbits homoclinic to resonances: the Hamiltonian case

In this paper we develop methods to show the existence of orbits homoclinic or heteroclinic to periodic orbits, hyperbolic fixed points or combinations of hyperbolic fixed points and/or periodic orbits in a class of two-degree-offreedom, integrable Hamiltonian systems subject to arbitrary Hamiltonian perturbations. Our methods differ from previous methods in that the invariant sets (periodic or...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009